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Abstract-The unsteady Iaminar natural convection flow from a heated horizontal cylinder under diverse 
surface boundary conditions is investigated numerically using the spline fractional step method. Some 
characteristics of the boundary layer obtained with a scale analysis are compared with the numerical 
results. The development of the plume region as well as the surface heat transfer and local flow field are 
evaluated. At small times, the present numerical solutions approach the boundary layer results and are in 
good agreement with the results from the scale analysis. A more detailed study of the development of the 
plume region, using computed particle trajectories is reported. All results are obtained using a personal 
computer. Qualitative comparisons between the present results and flow visualization experiments partially 

verify the numerical results. 

INTRODUCTION 

TWO-DIMENSIONAL laminar natural convection from 
horizontal cylinders has been extensively investigated 
analytically, numerically and experimentally. Most 
prior work hasconcentrated on steady-state situations 
with either a specified surface temperature or a uni- 
form surface heat flux. Thus Kuehn and Goldstein [l] 
numerically solved the complete Navier-Stokes and 
energy equations for laminar natural convection from 
a horizontal isothe~al cylinder using a finite-differ- 
ence technique. Farouk and Guceri [2] attacked the 
same problem for uniform as well as non-uniform 
surface temperature and heat flux distributions on the 
cylinder. Qureshi and Ahmad [3] provided numerical 
solutions for a horizontal cylinder with uniform heat 
flux using a technique similar to that indicated in ref. 
[ 11. The authors [4] recently reported on an extensive 
numerical study of the laminar natural convection 
flow from a heated horizontal cylinder using a newly 
developed spline fractional step technique [5]. 

The literature on transient free convection studies 
is much less abundant. The great majority of studies 
reported in the literature are concerned with ge- 
ometries such as vertical cylinders or plates. Typically, 
an initially pure conduction situation is followed 
by a convective transition regime in which leading 
edge effects become dominant. Finally, a transient 
approach to a steady state occurs. Unsteady natural 
convection from a horizontal cylinder has not been 
extensively treated. A perusal of the current literature 
on the subject indicates that very few studies have 
been realized in which an attempt is made to define 
the typical characteristics of the problem. An exper- 
imental study by Ostroumov [6] reported on the de- 
velopment of the convection regime initiated by a 
suddenly heated fine wire. Vest and Lawson [7] also 

reported on a similar experiment. Parsons and Mul- 
ligan [8] presented experimental data for the transient 
free convective heat transfer from a horizontal wire 
in air. An early analytical study, using the boundary 
layer approximation and series continuation for small 
time was established by Elliott [9]. He considered large 
Grashof numbers and derived solutions for the stream 
function and the temperature field. Values of the skin 
friction and heat transfer coefficient obtained for small 
time were then extrapolated to infinite time to predict 
their final steady-state values. These results are of 
course, invalid in the plume region where the bound- 
ary layer assumption breaks down. Based on ref. [9], 
Gupta and Fop [lo] performed a perturbation analy- 
sis of the boundary layer equations for the unsteady 
free convection past a circular cylinder in order to 
estimate the influence of curvature effects on the sur- 
face heat transfer as well as on the skin friction. Their 
results indicated that the curvature leads to an in- 
crease in both skin friction and heat transfer rate from 
the surface of the cylinder. In a study similar to that of 
ref. 181, Katagiri and Pop [l l] reported numerical 
solutions to the unsteady free convection for an iso- 
thermal horizontal cylinder the temperature of which 
is suddenly increased to a large Grashof number. Sako 
et ai. [I21 presented numerical solutions to the tran- 
sient natural convection from a horizontal cylinder at 
low Rayleigh numbers using a hybrid grid. Their 
results for the mean Nusselt numbers at steady state 
agree fairly well with those of Kuehn and Goldstein 
[l]. Genccli [13] presented experimental data for the 
onset of convection in water around a horizontal cyl- 
inder subjected to a constant surface heat flux. A 
critical Rayleigh number which defines the onset of 
convection was reported. Most recently, Song 1141 
publish~ some nmerical results of transient natural 
convection around a horizontal wire under a constant 
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NOMENCLATURE 

cylinder diameter 

gravitational acceleration 
local heat transfer coefficient 
fluid thermal conductivity 
dimensionless radial distance between 
cylinder surface and outer boundary 

of solution domain 

Nusselt number, hD/k 
pressure 
Prandtl number, p/r 

surface heat flux 
dimensionless radial coordinate, r’/D 

radial coordinate 

Rayleigh number, g/3D’(T& - T:,)/pa 

modified Rayleigh number, g,8q”D4/kc(p 
dimensionless time, t’a/D* (* signifies 

steady state almost attained) 

time 
dimensionless temperature 
temperature 
temperature of cylinder surface 
temperature of ambient fluid 
dimensionless radial velocity, 

iJD/Ci 
radial velocity, positive outwards 
modified dimensionless radial velocity, 
UD/(@ Rae 25) 

dimensionless angular velocity, VD/a 

I’ angular velocity, positive 
counterclockwise 

V* modified dimensionless angular velocity, 
Vl)/(sc Ru’ ‘) 

Y radial distance from cylinder surface 
Y* (Y Ra”.“)/D. 

Greek symbols 

; 
thermal diffusivity 
coefficient of thermal expansion 

ii, thickness of the thermal boundary layer 
6, thickness of the viscous layer 
H angular coordinate ; zero is downward 

vertical, positive counter-clockwise on 
right half of cylinder 

li kinematic viscosity 
T time scale for the form of the thermal 

boundary layer 

rd delay time 

Y dimensionless stream function 

n dimensionless vorticity. 

Superscript 
average value. 

Subscripts 

i, i nodal positions in the radial and angular 1 
directions, respectively. I 

I 

heat flux using a finite difference method. His study 
however, was carried out only at low Rayleigh num- 

bers (0.12 < Ra* < 20). Furthermore, a physically 
unrealistic boundary condition imposed at the outer 
limit (i.e. T = 0 at r = a) of his computational 
domain would probably lead to numerical difficulties 
at high Rayleigh number computations. 

To the authors’ knowledge, transient solutions of 
the complete Navier-Stokes and energy equations for 
high Rayleigh numbers have not yet been reported. It 
appears that the primary difficulty to be overcome by 
the numerical procedure is the manner in which the 

outer (artificially imposed) boundary conditions, par- 
ticularly the thermal condition at the outflow bound- 
ary of the plume is to be specified. A commonly used 
condition for the steady-state problem is to assume 
that the temperature gradient normal to the pseudo 
boundary is zero, thus implying that the heat transfer 

is dominated by convective movement rather than 
by conduction [I]. This obviously requires that the 
outflow velocities are sufficiently large, a condition 
that is probably satisfied within the scope of the 
steady-state case, since the plume region is fully 
developed. For the transient case however, before the 
full development of the plume, the validity of this 
assumption is not at all obvious. 

Consequently, the present investigation is devoted 
to the numerical simulation of the transient laminar 
natural convection flow about a finite horizontal cyl- 
inder for a complete range of Rayleigh numbers using 
the spline method presented in ref. [4]. The advantages 
of this technique are that a variable grid spacing may 
be used, thus obviating the need for hybrid grids with 
their attendant interpolations ; it is of high accuracy ; 
requires fewer grid points for a given problem and 
can therefore be used on a personal computer. In 
addition, due to the various formulations possible. i.e. 
using the variable, its first derivative or its second 
derivative as the ‘operational variable’, higher order 
boundary conditions can be easily incorporated into 
the numerical scheme [15]. Computational results 
have been obtained for a range of Rayleigh numbers 
between 0. I and 2 x 107. 

GOVERNING EQUATIONS 

The natural convection flow from a horizontal cyl- 
inder is governed by the continuity equation, the two- 
dimensional Navier-Stokes equation and the energy 
equation. In cylindrical polar coordinates, they take 
the following form : 
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continuity 

I g+>+g=o 
momentum, in the radial (r) direction 

I I 0’2 $+uf~+;&$!! 
p W 

-gcos0[1-jI(T’--T’,)] 

( 

au i ad d I a% 2 ad 
+ti p+Tp+++fr’2--JJZ. 

) 
(2) 

momentum, in the circumferential (0) direction 

ad r , 
Cr+u~~+~~+c~L!z 

r’ pr’ ae 

fg sin Q[l -p(T’- Tm)] 

( 

a9 I ad d i a% 2 ad 
+P p+r/p+r”+pae’+pjq 

1 
(3) 

energy 

The non-dimensional equations in stream function 
and vorticity form (using the Boussinesq approxi- 
mation for the body forces) may be written as 

V2Y = -0 (5) 

+PrRa 
( 

(6) 

with 

(8) 

and 

1 ayI av u=---, 
r a6 v= -ar. (9) 

Boundary conditions 
Since the flow is symmetric about a vertical plane 

passing through the axis of the cylinder, only the half- 
plane need be considered. The boundary conditions 
then become 

u=v=y’=0 

and 

T= 1 

or 

aT 
-_= -1 
ijr 

on the cylinder surface and 

Y=,=Q=aT=O 
a0 (10) 

on the lines of symmetry. 
At the inflow region (U < 0) 

v+o=*, f12= _iE 
r2 ae* (11) 

on the outflow region (U > 0) 

For the temperature boundary condition, attempts 

were made to develop a modified relation that may 
better express the intrinsic feature of the transient 
flow, without success. In the present study therefore, 
the commonly used boundary condition for outflow, 
i.e. a zero temperature gradient normal to the pseudo 
boundary has been adopted 

aT 
-= 0. 
& (13) 

Fortunately, numerical tests indicated [4] that dur- 

ing the transient state at higher Rayleigh numbers 
when the outflow boundary is far enough away from 

the cylinder surface, its influence on both the heat 
transfer and fluid flow near the surface of the cylinder 

is negligible, and the convection effects always domi- 
nate over conduction so that the latter can be usually 
neglected. A detailed discussion of this point will be 
presented in a forthcoming report. 

NUMERICAL CONSIDERATIONS 

The spline fractional step method (SFSM) [5] was 

used to generate an algorithm resulting in a tri- 
diagonal system containing either function values or 
first derivatives at the grid points. The essential feature 
of this method is that at each computational step, 
the problem is treated as a one-dimensional case in 
implicit form so that only one tridiagonal matrix sys- 
tem needs to be evaluated. The SFSM schemes repre- 
senting the governing equations (5)-(7) and the 
boundary condition imposed at the outer circular limit 
have been reported in detail in ref. [4] and will there- 
fore not be elucidated further. 



RESULTS AND DISCUSSION 

Before solving equations (j)-(7) numerically, it is 

useful to rely on pure scaling arguments to theor- 
etically predict the types of flow and heat transfer 

patterns that can develop near the cylinder surface. 
The scale analysis follows that due to Patterson and 

Imberger [I61 for the natural convection flow in a 
rectangular cavity. 

Immediately after the start of heating (t’ = 0). the 

fluid bordering the cylinder surface is motionless, so 
that the energy equation (4) expresses a balance 
between thermal inertia and conduction normal to the 
cylinder surface. Taking AT’, t’ and iir as the scales 

of changes on T’. t’ and the radial coordinate r’ in 
equation (4) and assuming ?‘T’/Sr” x 2’TjW and 

r’ B fr, the following relation may be obtained from 
equation (4) : 

AT’ AT’ 

If ‘“Z, (14) 

so 

6, - (xt’)” <. (15) 

The heated layer 6,. will naturally tend to rise along 
the cylinder wall. As in ref. [17] the velocity scale of 

this tangential motion may be obtained from the two 
momentum equations (2) and (3) by eliminating the 
pressure and retaining the dominant terms. For 
Pr > 1 (marginally valid for Pr N 1 [17]), from the 

balance between buoyancy force and viscous force, 
the initial tangential velocity scale is 

Comparing with the vertical velocity scale for the 
rectangular cavity [16], it may be seen that the differ- 
ence arises just in the term sin 0 inside the coefficient, 
since the dependence of tangential velocity will obvi- 
ousiy depend on position 0. 

The buoyancy forces act to accelerate the fluid only 
over the thickness 6r ; heat is being convected into 
this layer by the tangential velocity equation (16), 
and the layer will continue to grow until the heat 
conducted in from the boundary balances that con- 
vected away. For the present case, the convection term 
is of the order of (u’AT’/Rrr) and the conduction term 

is of the order of (aAT’/6$), thus 

or 

This relation, in fact, expresses the above balance. 
Here U’ represents the average tangential velocity 

From equation (16) we obtain 

and 

or in dimensionless form 

and 

(18) 

(19) 

Here, r represents the time scale of the thermal bound- 
ary layer formed. It is interesting to note that this time 

scale differs by a factor of n/2 over that (T - Ru ” ‘) 
for a rectangular cavity with height D and horizontal 
length D. This is because the fluid particles move along 
the cylinder surface in the boundary layer. 

For the case of the constant heat flux surface bound- 
ary condition, taking into account the relation Ra* = 
Ra Nu and the correlation Nu = 0.800(Ra*)” IiT 
[3], the following relation may be obtained from 

equation (18) : 

T - I.4(Ra*)m”J”. (18’) 

The viscous layer is governed by an inertial-viscous 
balance. From equation (3). the thickness of the vis- 
cous layer is about the order of (LL’) ‘r” ‘). i.e. 

6 _ # it” i (30, 

thus 

ri,, - Pr” ’ 6 7 (21) 

which is the same relation as for a rectangular cavity 

1161. 

Numerical solution 
Numerical results have been obtained for various 

boundary conditions. In this paper, due to space limi- 
tations, the transient flow and temperature fields and 
heat transfer results will be discussed principally for 
the isothermal surface boundary condition although 
some computations for the constant heat flux case 
have also been presented. 

The time dependent non-linear coupled partial 
differential equations were solved by considering an 
(r-0) grid 11 x21, 21 x23, or 17x31 on a non-uni- 
form mesh with r,+, jr, = 1.30 and fl,, ,/O, = 0.87 or 

r,+,/r, = l.lOandQ,+,/Q, =0.91 orr,+,/r, = 1.15and 
fl,, , /O, = 0.93, respectively. Near the cylinder surface 
and in the plume region, a very fine grid spacing was 
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chosen. (The angular coordinate 0 is measured from 
the lower symmetry line, positive counterclockwise on 
the right half of the cylinder.) The change from inflow 
to outflow is computed automatically as in ref. [4] 
with no special assumption being required. The time 
step used in the present calculation was, in general, 
At = lO/& for the vorticity and energy equations 
while the stream function equation was solved in false 
transient form. 

Small time solution. At time t = 0, the temperature 
at the surface is increased suddenly from T, to T, 
and maintained at this vafue. Heat is transferred 
initially by pure conduction to the surrounding 
medium and for all Rayleigh numbers, this initial 
conductive phase is characterized by concentric circles 
for the isotherms in the axial plane, until a certain 
critical time is reached. Figures 1 and 2 show a typical 
sequence of the different stages of development at 
Ra = 10 (low Rayleigh number) and 10’ (high Ray- 
leigh number). Patterns similar to Fig. 1 have been 

observed in experiments using a heated wire [7]. For 
comparison with the experimental data of Genceli 
[ 131, a corresponding numerical solution compatible 
with a cylinder diameter of 25 mm was obtained with 
I&z* = 745 000 and a = 1.43 x 10F7 for water at an 
ambient temperature of 20°C. The isotherm patterns 
are presented in Fig. 3 for different times. They are 
in very good agreement with Genceli’s photographs 
using interferometry. According to equation (18’), for 
the present case ti - 22 and R, - 20 (his definition). 
Compa~ng the present results with the experiments 
of ref. [13], the present results have been computed at 
times shghtly advanced with respect to the exper- 
iments, as shown in Fig. 3. 

A comparison between the present results and the 
experimental temperature profiles [ 131 at the top of 
the cylinder is presented in Fig. 4. The agreement is 
very good for specific values of critical delay time as 
well as for the development stage. However, beyond 
this critical period, a transient region is subsequently 

t = 0.5 *t = 16 

FIG. 1. Isotherms (right) and streamlines (left) at different stages of deveIopment for IZa = IO and Pr = 0.7 
(AY = 1 and AT = 0.1). 

t=o.m t=o.m *t = o,aL? 

FIG. 2. Isotherms (right) and streamlines (left) at different stages of development for Ra = lo7 and Pr = 0.7 
(AY = 20 and AT = 0.1). 
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t’= 14.2 s t’= 19 s 

R = 7.9 R = 14.1 

(7) 

t’= 43 s 

fl= 72 
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(3) 

t’= 23.7 s 

R = 21.9 

(8) 
t’= q8s 

R= 90 

(a) 

(4) 

t’= 28,5 s 

R = 31.7 

(9) 
t’= 57 s 

R = 126.7 

(5) 

+‘= 33.3 s 
F = 43.2 

(1) (2) (3) (4) (5) 

t=15 s R=6.6 t=20 s R=15.6 t=25 s R=24.4 t=30 s R=35.1 t=35 s R=47.6 

(6) 

t=40 s R=62.4 

(7) 

t=45 s R=79.0 

(6) 

t=50 s R=97.5 

(b) 

(9) (10) 

t=60 s R=140.4 t=Xi s R=219.4 

FIG. 3. (a) Isotherms at different stages of development for Ra * = 745000 and Pr = 7.01 (AT = 0.2) 
(b) Corresponding experiment from ref. [ 131. 

formed with convective effects where particles start more, when t E z, the thermal boundary layer thick- 

rising towards the top of the cylinder. This phenom- ness at first reaches its equilibrium (steady state) value 

enon has also been observed in the experiments of (except for the plume region); then overshoots to a 

Parsons and Mulligan [8] and this period of time slightly greater thickness (attained at t = rd) and 

called the ‘delay time’ is denoted by Q. Numerical finally backs down to its steady-state position. This 

tests indicate that the value of z,, is slightly greater phenomenon becomes more accentuated at low Ray- 

than the T obtained from a scale analysis. Further- leigh numbers. For example, the variation of tem- 
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FIG. 4. Comparison between numerically computed and experimentally measured temperature profiles [13] 
at the top of the cylinder. 

perature profiles at different times for 6 = 90” and 
Ra = IO is exhibited in Fig. 5(a). It is clearly seen that 
the temperature profile at a dimensionless time of 
t = 0.9 first approaches its steady-state thickness, then 
subsequently overshoots to its maximum value at 
about t = 3.5 while the corresponding average Nusselt 
number on the cylinder surface attains its minimum 
value (Fig. 5(b)), and then finally becomes thinner 

at the steady state. (This behaviour has also been 
observed by Parsons and Mulligan [B] at low Rayleigh 
numbers who call it the ‘overshoot’ of the steady state.) 

Figure 6 indicates the comparison between the 
boundary layer solutions of ref. [12] and the present 

results for the tangential velocity profiles at B = 90” 
for Ra = 106. (The parameter t’* has been defined in 
ref. [12] as 2(2Pr Ra)0.25t0~5.) The radial temperature 

I?3 = 10 , Pr - 0.7 

g = 900 

-.- 
0 2 4 6 a 1c 

lb) Ra = 10 

2.4- 
Pr = 0.7 

l,a- 

!z 
m 

1.2 - 

:-:i_ 
4 8 12 16 20 

Y’ t 

FIG. S. For Ru = 10 and Pr = 0.7 at 0 = 90” : (a) radial temperature distribution at various times; (b) time 
histories of Nusselt numbers. 
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- - - PRESENT COMPUTATION 

FIG. 6. Computed tangential velocity profiles compared with boundary layer results for Ra = IO”. PP = (I.7 
and H = 90‘ at various times. 

profiles at 0 = 0“ are found to be virtually indis- 
tinguishable from those in ref. [ 121 and have not been 
reproduced here. Nowever, the marked difference 
between the velocity profiles at small times is hardly 
surprising, since it is well known that the boundary 
layer assumptions break down when the viscous 
boundary layer is weak or nonexistent. 

It is interesting to note that for Ra = lo6 the ther- 
mal boundary layer was formed when I - 0.0018. This 
value coincides with that of r from the scale analysis 
(in fact, r - n/2Ra-“*-’ - 0.0016). For Ra = IO5 and 
IO’, the time taken to form the thermal boundary 
layer is about t - 0.005 and 0.00056, respectively, 
which compares favourably with the corresponding 
values from a scale analysis of z - 0.0049 and 0.0005. 
These results demonstrate that equation (18) obtained 
from the scale analysis, is a reliable guide in predicting 
the duration of the transient time of the pure con- 

duction stage for higher Rayleigh numbers. 
The overshoot phenomenon. Figures 7(a) and (b) 

are the profiles of temperature and tangential velocity 
for different times at 0 = 132’ and Ra = 10’. The 
‘overshoot’ behaviour is more evident and it is easy 
to see that the fluid particles rotate while rising. The 
negative V* at large values of Y* in Fig. 7(b) implies 
just such a recirculation. 

It is important to note that for higher Rayleigh 
numbers the ‘overshoot’ phenomenon is strong in the 
region 120” < 0 < 170”. Particularly for Ra = lo’, the 
maximum ‘overshoot’ occurs near 0 = 160”. At this 
stage, the diffusion of heat from the surface dominates 
over any convective effects so that the buoyancy forces 
act to accelerate only the fluid within the narrow ther- 
mal region &. Once convection starts however, fresh 

fluid is entrained into the heated region so that its 
temperature is reduced with an accompanying 
reduction in body forces. The overshoot bchaviour is 
therefore most likely caused by fluid inertia effects. In 
order to further ascertain the details of the initiation 
of the convection regime, numerical experiments using 
particle trajectories were performed. The results (to 
be discussed later) indicate that as soon as the tem- 
perature of the cylinder surface is raised from r, to 
T,, particles adjoining the cylinder surface at 6 = 90’ 
commence moving and follow a path approximately 
tangential to the surface of the cylinder until they 
approach the top (0 = 1 SO”) where they separate and 
form a weak recirculating vortex region as shown in 
Figs. 1 and 2. it must be emphasized that during this 
whole transient process, the velocities involved are 
extremely low. Interestingly, the expected movement 
of fluid particles near the top of the cylinder occurs at 
t > z, that is, the development of the plume region 
lags behind the formation of the thermal boundary 
layer. This means that the onset of motion results 
from the natural convection along the approximately 
vertical portions of the cylinder surface near t) = 90 
and not from a BCnard type convective instability in 
the statically unstable conduction temperature profile 
near 0 = 180”. 

Thr deuekopment qf the plume region. The devel- 
opment of the plume region is presented in further 
detail for Ra = lo6 in Fig. 8. With the progress 
of time, convective effects become increasingly 
dominant. When I > Z, i.e. after the boundary layer 
has formed, the tangential velocity continues to 
increase. This increase in convection causes devel- 
opment of the plume region. The upward flow along 
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Pr = 0.7 

E = 132" 

OS 

0.4 

03 

0. 

0.0. 

-o.l- 

-0.2 

lb) Ra = 10' 
Pr = a.7 

e = 1320 

0 2 6 8 10 0 2 I, 6 8 10 

Y r 

FIG. 7. Numerical results for Ra = IO’, Pr = 0.7 and 19 = 132”: (a) radial temperature distribution at 
various times ; (b) tangential velocity profiles at various times. 

t = o.M355 t = 0.006 t = o.ax5 t = o.KI7 *t = o.oll 

FIG. 8. Transient isotherms and streamlines for Ra = lo6 and Pr = 0.7 (AY = 10 and AT = 0.2). 

the surface of the cylinder transports heated fluid to number, the rotation is quite evident and the leading 
the top of the cylinder and gradually forms a distinct edge of the heated fluid forms a ‘mushroom’ pattern 
temperature front between the heated fluid and the which gradually degrades into the final (steady) state 
unheated ambient as shown in Figs. 2 and 8. At the form of a convection plume. At very high Rayleigh 
transient stage, the fluid at the top of the cylinder number (about Ra = 5 x lo’), small separation vor- 
detaches itself and rises while rotating at the same tices, symmetrically disposed near the top surface of 
time because of viscous effects. At a higher Rayleigh the cylinder are formed, grow moderately, are shed 
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(a) 

/ 
t = 0.0055 t = 0.01 

FLG. 9. Particle trajectories at different times for Ru = IOh : (a) t = 0.006; (b) I : 0.01. 

into the plume and then reformed again with this 
sequence repeating itself. (At the present time, it is 
unclear whether this rather interesting behaviour is 

due to deficiencies in the model (the use of a symmetric 
half-plane for example) or whether it is a physically 
realistic phenomenon.) 

The particle trajectories presented in Fig. 9 provide 

other means with which to analyse the development 
of the fluid patterns for Ra = 106. For low Rayleigh 
numbers (Ra -c lo), particles rise with almost no 

rotation anywhere. However, at higher Rayleigh num- 
bers, particles which initially are within the region of 

90” < Q < 270” (except inside the boundary layer and 
at the vertical line) rise while rotating simultaneously. 
For example, trajectories of particles initially placed 
along a radial line at 0 = 156” are presented in Fig. 9. 

It is interesting to note that particles close to the 
cylinder surface have fairly stable paths after they are 
entrained into the boundary layer as shown in the left 
half of the figure (at the line 0 E 325” or 0 = 35”). 
These trajectories are in basic qualitative agreement 
with experimental observations [6]. 

Local and average Nusselt numbers. The time vari- 
ation of local surface Nusselt numbers for Ra = 104, 
IOX and 10b is shown in Figs. 10 and 11(a) and (b). 
For Ru = 104, comparison between the present results 
and those of Sako et al. [12] are presented. The agree- 
ment is quite good. 

In general, at the initial stage, the local Nusselt 
numbers are uniformly distributed since heat trans- 
mission is by conduction. With time, convection 
begins to set in so that for Ra = lo6 at t = 0.0012, the 

maximum difference between the Nusselt numbers is 
about 20% indicating that convective effects are 
becoming significant. Finally at steady state, there is 
about a 84% difference between the value of Nu at the 
top and at the bottom of the cylinder. The ‘overshoot 
behaviour although present, is less marked than that 
at low Rayleigh number. 

The time variation of the mean Nusselt numbers at 
the cylinder surface for different Rayleigh numbers is 
presented in Fig. 12. For lower Rayleigh numbers they 

are in good agreement with the results presented in 
ref. [12], however, due to space limitations they have 
not been reproduced here. Since the cylinder surface 
temperature increases suddenly from T, to T,, the 
starting heat transfer coefficients are initially large, 
then decrease quickly as the thickness of the thermal 
region grows until it reaches its minimum value and 
then increases again until it gradually attains its steady 
state. The lower the Rayleigh number, the more pro- 
nounced is the ‘overshoot’. For example, values range 
from about 17% of steady state at Ra = 1 to about 
2% for Ra = 10’. After the ‘overshoot’ and before 
attaining a steady state, the values of NU at the higher 
Rayleigh numbers suffer very small oscillations that 
are almost impossible to detect in the figures. It is 
possible that this effect is caused by fluid inertia effects 
that lag behind the body forces driving them, so that 
the steady state of even the velocity field is attained in 
an oscillatory manner and not in smooth monotonic 

fashion. 
For lower Rayleigh numbers, a boundary layer can- 

not be formed and convection is relatively weak, so 
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FIG. 10. Comparison between the present solution and those of ref. 1121 for local ‘heat transfer coefficients 
at Ra = lo4 at different times. 

0” xl’ 60” 90” 120” W” Eu” - 0’ M’ 60’ 90” lzv 150’ 180 

8 0 

FIG. 11. Distribution of local Nusselt numbers at various times for Fr = 0.7 and: (a) Iza = IO’ ; 
(b) Ra = 10”. 

that conduction effects are dominant except far away 
from the cylinder surface. However, at higher Ray- 
leigh number, the effect of conduction is in general, 
limited to the boundary layer; outside this layer con- 
vection effects are always dominant. 

The influence of Prandtl number Pr on Nu is 
shown in Fig. 12(a) for Ra = 10’. The higher the 
Prandtl number, the higher the value of the Nusselt 
numbers. 

Variation of surface vorticity. Figures 13(a) and (b) 
show the time variation of the vorticity distribution 
on the cylinder surface for Ra = 106 and i07, respec- 

tively. For higher Rayleigh numbers, the ‘overshoot’ 
phenomenon is strong in the range of 120” < 6 < 170 
instead of in the range of 90” < f? < 150” [I I] observed 
at lower Rayleigh numbers. It is evident that an 
increase in Ra causes not only an increase in the 
value of the vorticity but also causes the range of the 
‘overshoot’ to shift towards the vertical. It is inter- 
esting to note that at the initial stage, the surface 
vorticity increases everywhere, however after a certain 
time (t > z) the values of vorticity decrease quickly 
in the range of 170” < B < 180” for Ra 2 lo’, this 
decrease becoming more pronounced the higher the 



Fro. 12. Time histories of Ri for various Kaylcigh numbers: (a) Rn = IO’ and Pr = 0.7, 3 and 10: 
(b) Ru = 1O’7 and Pr = 0.7. 

RayIeigh number. When Ra 3 10’ a counter-rotating gradient (which may be a direct cause of the cauntcr- 
vortex is formed near the top of the cylinder. This rotating vortex) is formed. When Ra > 5 x lo7 the 
appears to be due to the following causes : on the ane final steady counter-rotating vortex cannot h>e 
hand in the region near the top of the cylinder the obtained, however the phenomenon where it forms, 
heat transfer is relatively low so that the buoyancy is then shed and reforms has been observed. ft has 
force and therefore the rise velocity associated with it also been noted that at high Rayleigh numbers, under 
becomes quite weak; on the other hand when constant heat flux or small Biot number surface 
Ra > 10” the convection becomes very strong and boundary conditions, the counter-rotating vortex may 
results in a local heated region close to the surface be formed in the transient stage, but finally disap 
near 0 = 170” so that a horizontal inverse temperature pears, since the heat transfer coefficients near the top 
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of the cylinder are relatively large compared with the 
isothermal case. 

Instability. A rather interesting numerical feature 
has been observed during the development of the 
plume region. For high Rayleigh numbers, for ex- 
ample Ra > 106, the plume flow behaves in a lami- 
nar fashion below a certain characteristic distance 
measured vertically from the top of the cylinder. How- 
ever, beyond this distance, the temperature distri- 
bution exhibits some oscillations, indicated in Fig. 8 
(t = 0.006), that can eventually cause instability in 
the numerical procedure. In particular, for Rayleigh 
numbers exceeding lo7 at large values of the dimen- 
sionless distance L (for example, L > I), difficulties 
were encountered in attempts to obtain a convergent 
numerical solution. This is possibly a prelude to the 
development of the transition from laminar flow to 
turbulence. 

CONCLUSIONS 

The transient natural convection from a circular, 
horizontal cylinder has been studied numerically using 
spline integration techniques. Good agreement with 
published experimental and numerical data has been 
obtained. Overshoot and oscillatory behaviour of the 
local Nusselt numbers have been observed which 
decay as the steady state is approached. This has been 
associated with fluid inertia effects. At high Rayleigh 
numbers, the appearance of separation vortices, 
which are subsequently formed, shed and reformed 
when Ra > 5 x lo’, has been noted. 
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CONVECTION NATURELLE LAMINAIRE VARIABLE AUTOUR DE CYLINDRES 
HORIZONTAUX 

R&sum&La convection naturelle laminaire variable autour d’un cylindre chaud horizontal avec diverses 
conditions aux limites est etudiee numeriquement en utilisant une methode spline a echelons fractionnels. 
Quelques caracttristiques de la couche limite, obtenues avec une analyse d’tchelle, sont compartes aux 
rtsultats numeriques. On &value le developpement de la region de panache aussi bien que le champ local 
d’ecoulement et le transfert thermique en surface. Pour les temps petits, les solutions numeriques approchent 
les resultats de la couche limite et elles sont en bon accord avec les resultats de I’analyse d’echelle. On fait 
une etude detaillee du developpement de la region de panache en utilisant des trajectoires calculees de 
particules. Tous les resultats ont Cte obtenus en utilisant un calculateur personnel. Des comparaisons 
qualitatives entre les resultats de calcul et les visualisations d’ecoulement verifient partiellement les rtsultats 

numtriques. 



ZEITLICH VERANDERLICHE LAMINARE NATi.jRLICHE KONVEKTION AN EINEM 
WAAGERECHTEN ZYLINDER 

Zusammenfassung-Die instation& laminare natiirliche Konvektion an eincm behcizten w~lapcrcchren 
Zylinder wird numerisch mit Hilfe des Spline-Schrittvcrfahrens fiir verschiedenc Randbcdingungcn an 
der OberfCche tmtersucht. Einige Eigenschaftcn der Grenzschicht, die mit Hilfe eincr .4bschatzung der 
GrGBenordnung ermittelt worden sind. werden mit numerischen Ergebnissen verglichen. Die Entwicklung 
der Auftriebsfahne wit such der Wiirmetibergang an der Oberllache und das Brtliche Striimungsfeld werden 
bercchnet. Fiir kleine Zeiten nahern sich die numcrischen Ergebnisse denjenigen der Grenzschichtlijsung. 
Sie stimmen in diesem Fall gut mlt den Ergebnisscn aus der GrGllJenordnungsabschatzung iibcrem. Das 
Gebiet der Auftricbsfahne wird unter Verwendung berechneter Partikelbahnkurven eingehendcr untel- 
sucht. Samtliche Ergebnisse beruhen auf Bercchnungcn mit oinem Personal-Computer. Ein qualitativcl 
Verglcich ruischen den vorliegcnden Ergebnisscn und txperimentellen Striimungsbeobachtu!7gen bestitigt 

tcilueise die numct-ischcn Ergchnissc. 

IlEPEXOAHbIfi PEXHM JIAMHHAPHOB ECTECTBEHHOR KOHBEKqMM B03JIE 
TOPH30HTAJIbHbIX qMJIHHJJPOB 

AllHOT- llClIOJlb30BaHUeM CIIJIaiiHOBOrO MeTOAa np06~~x IllarOB 'IllCJIeHHO BCCJlenyeTCK HCCTB- 

~BOHapHOenaMwHapHOe~Te~BeHHOKOHBeKTllBHOeTe~eHaeOT HarpCTO~OI'OpH30HT~bHOrOlWIEiHApa 

npki pa3nwiHbIx rpaHwHbIx ycnoelinx Ha II~~S~~XHOCTH. HeKOTOpbIe xapaKTepwTEiKa norpaHawor0 

CJtOll, ,,O,Iy=IeHHbIC IIpH aHiUlB3C pa3MepHOCTeii,CpaBHHBaIOTCK C VACJIeHHbIMH pe3yJIbTaTaMH. OUeHEl- 

BaIOTCR pa3BHTHe o6nacre BOCXOLWlterO nOTOKa,a TaKme IIOBepXHOCTHbIti TeIIJIOIIepeHW H JIOKaJIbHbIe 

XapaKTepRCTHKH nOJIll TeYeHHII. npH MaJIbIX HHTepBUIaX BpeMeHIl HakeHHbIe “HCJIeHHbIe peUIeHH%I 

npu6naxcamTcr K pe3yJIbTaTaM, nOJIyYeHHblM B npH6nExema nOrpaHWiHOr0 CJIOK, li XOpOIUO COrJla- 

CyloTCK Cpe3yJIbT$lTahtEi aHUlH3a pa3MepHOCTek6OJIee LteTaJIbHO OnSiCbIBaeTCR pa3BEfTHe o6nacra BOC- 

XOjJ.KllJerO IIOTOKa Ha OCHOBe paCCVATaHHbIX TpaeKTOpHfi 9aCTHIJ Bee pe3yJIbTaTbI IIOnyYeHbI Ha 

nCpCOHWTbHOM KOhfIIbJOTepe. Ka'ieCTBeHHbIe CpaBHeHWI IIOJIy'ieIiHbIX LtaHHbIX H 3KCIIepHMeHTOB I-IO 


